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Abstract— This paper deals with easy programming me-
thods of dual-arm manipulation tasks for humanoid robots.
Hereby a Programming by Demonstration system is used
in order to observe, learn and generalize tasks performed
by humans. A classification for dual-arm manipulations is
introduced, enabling a segmentation of tasks into adequate
subtasks. Further it is shown how the generated programs
are mapped on and executed by a humanoid robot.

I. I NTRODUCTION

Creating artificial machines that are as versatile and
flexible as humans is extremely difficult because the al-
gorithms necessary to teach such machines are not yet
clear. We believe that Programming by Demonstration
(PbD) is the right way to teach autonomous humanoid
robots, which are expected to exist and work together
with human beings in everyday environments such as
hospitals, offices and households and to serve the needs
of elderly and disabled people. The underling idea of
Programming by demonstration is to enable the robot to
observe a human performing a task, to extract as much
as possible information from the demonstration and map
it into an abstract, generalized representation in order to
make it robot invariant. In particular, the programming
and coordination of dual-arm manipulation tasks are a
major challenge in the process of developing applicable
and profitable humanoid robotic devices for domains less
constrained than the industrial ones.
The remainder of this paper is organized as follow: In
section II an overview about programming approaches
following the Programming by Demonstration paradigm is
given. Section III describes the PbD framework and the
different phases of a PbD cycles. Section IV addresses
the classification, detecting and repesenting of coordina-
ted dual-arm actions. In section V a framework for the
coordinated execution of dual-arm manipulation tasks is
presented. The execution of a dual-arm manipulation task
generated by our PbD system and the experimental setup,
using a humanoid robot, are described in section VI.

II. RELATED WORK

Several programming systems and approaches based on
human demonstrations have been proposed during the past
years. Many of them address special problems or a special
subset of objects only. An overview and classification of
the approaches can be found in [1], [2].

Basis for the mapping of a demonstration to a robot
system are the task representation and task analysis. Often,
the analysis of a demonstration takes place observing the
changes in the scene. These changes can be described using
relational expressions or contact relations [3], [4].

Issues for learning to map action sequences to dissimilar
agents have been investigated by [5]. Here, the agent
learns an explicit correspondence between his own possible
actions and the actions performed by a demonstrator agent
by imitation. To learn correct correspondences several
demonstrations of the same problem are necessary for the
general case. In [6] the authors concentrate on the role of
interaction during task learning. They use multiple demon-
strations to teach a single task. After generalization they
use the teacher’s feedback to refine the task knowledge.

For generalizing a single demonstration mainly explana-
tion based methods are used [7], [8]. They allow for an ade-
quate generalization taken from only one example (One-
Shot-Learning). Approaches based on One-shot-Learning
techniques are the only ones feasible for end users since
giving many similar performing examples is an annoying
task.

Research about programming coordinated tasks by de-
monstration can’t be found in the literature, however there
are several works on analyzing bi-manual manipulations
performed by humans. Many papers [9], [10] in the HCI
field have investigated the role of hands performing bi-
manual tasks. Most of them are based on the early research
of Guiard [11], [12]. The outcome of this research is
mainly that a relative spacial relation exists between the
trajectory of hands performing coordinated tasks. Based
on this the hand’s interaction during bi-manual actions has
been classified in symmetric and asymmetric actions.

III. PBD FRAMEWORK

This section will describe briefly the PbD framework
developed and used in our institute for many years. For
more details please refer to [13] and [14]. Figure 1 shows
the PbD-cycle enabling the transfer of task knowledge
from the human to a robot target. The main idea is to
extract as much information as possible from a human
demonstration and transform it into an abstract, generalized
representation, in order to make it reusable for different
kinds of robots. Based on this approach high level tasks
can be learned and adapted to a certain robot configuration.
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Hereby high level tasks are composed of basic skills (i.e.
sensor motor skills of different complexities), which are
called elementary operators (EO’s). The used symbolic
learning techniques relay on explanation based methods
enabling the system to learn from one or a few examples.
Nevertheless the system integrates also sub-symbolic lear-
ning methods like Neuronal Networks or Support Vector
Machines for classifying different grasps.

Fig. 1. Programming by Demonstration Cycle from a Human Demon-
stration to a Robotic Target System.

The PbD-cycle can be divided in three major phases:

• Perception and Interpretation of the demonstrated task
• Generating abstract task knowledge through generali-

zation
• Mapping abstract tasks to specific robot targets.

A. Perception and Interpretation of the demonstrated task

Due to the fact that robots have a limited number of
sensors and that these are rather optimized for the execution
of tasks than for observing humans, a demonstration of a
task is recorded in a separate environment, the so called
demonstration area. Here, three active stereo cameras and
two data-gloves with magnetic trackers and tactile sensors
are used for perception of a demonstrated task. The en-
vironment is completely modeled and the assumption is
made that all changes in the world are done by the the
user (closed world assumption).
After preprocessing and sensor fusion the recorded data
will be segmented into task relevant fragments according
to global criteria like grasp / release actions or velo-
city, distance metrics etc. and model based background
knowledge. Since the main topic of the system is the
learning of manipulations, task segmentation into grasp and
release operations represents the first fragmentation step.
The last segmentation step will be a trajectory fragmen-
tation into elementary trajectories like linear or circular

moves, in order to reduce complexity. For handling more
thanPick&Placeoperations an intermediate fragmentation
step based on statistical hypotheses was introduced to the
system [15].
In the next phase the generated fragments are analyzed
and mapped toEO’s. Consequently the outcome of the
interpretation step is aEO-sequence, where eachEO has a
pre- and a postcondition describing the worlds state before
and after the execution of theEO respectively the effects
caused by applying theEO or Macro on the environment.

B. Generating abstract task knowledge through generali-
zation

The abstract task description is created by the gene-
ralization of an EO sequence over object types, grasp
types and spatial relations. Hereby the manipulated objects
are substituted by the corresponding object classes and
the performed grasps are classified in different static and
dynamic grasp types. The generalization over space is done
by introducingFree Move EO’sbetween dis-approach and
approach fragments of trajectories during a grasp or a
release operation.
To fulfill the goal of reusability of learned task knowledge
these are represented in a tree like structure calledMacro
operator, where the levels are corresponding to existing
(previously learned) subtasks. The Macro operators are
build up from the bottom (leaves) by combining EO’s to
existing Macros (see fig. 2). For example aPick Macro is
composed of anApproach, a Grasp and a Dis-Approach
macro etc. The proposed representation enables the execu-
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Fig. 2. Example for a task representation as a Macro-operator.

tion of learned tasks on different robot targets by mapping
EO’s on system dependent adaptable skills. Further whole
Macro operators can be substituted with planned subtasks
taking into account constraints of the executing system.

IV. D ETECTING AND REPRESENTINGDUAL ARM

MANIPULATION

Programming dual arm manipulation by demonstration
requires a classification of coordinated actions in order to
enable the system to fulfill a reasonable segmentation of
the observed task. Following the conclusions of [12] two
arm manipulations can be classified according to fig. 3 in
coordinated and uncoordinated tasks.

• Uncoordinated two arm manipulations are tasks in
which the hands are fulfilling manipulations without
the need for coordination. In this case tasks are exe-
cuted independently for each hand and moreover an
uncoordinated two hand manipulation can be mapped
on a one arm robot by the sequential execution of the
hand independent tasks.



• Coordinated two arm manipulations are tasks in
which the movement of the hands needs to be syn-
chronized. These tasks can be subdivided further in:

– symmetric coordinated tasksdescribing mani-
pulations in which both hands are manipulating
the same object, creating a closed kinematic chain
and

– asymmetric coordinated taskswhere the hands
are manipulation different objects like in a tool
handling task.

bimanual tasks

coordinated uncoordinated

symetric asymetric 

Fig. 3. Classification of bimanual tasks

A. Detection of two hand manipulations

Detection of two hand manipulation is done by defi-
ning rules (algorithms) for segmentation of the recorded
demonstration and in contrast to thePick&Place-Segmenter
the hand actions have to be processed synchronously.
According to the presented classification for each type of
two hand actions a segmentation algorithm was developed.
First, the segmentation of two hand manipulations divi-
des the demonstration into one- and two-hand fragments.
Hereby segments are detected where both hands are in a

”
grasped“ state. Secondly the found two hand fragments

are processed in order to detect coordinated actions. This
is also done in a two stage process. The first phase detects
symmetric coordinate manipulationby searching for closed
kinematic chains during the manipulation. The remaining
fragments are then processed, in order to detectasymmetric
coordinated manipulations. Two main characteristics for
this action type can be distinguished:

1) The different roles of the hands: One hand stabilizes
an object and the other one acts relative to it. Taking
the example “opening a cake box“ one hand holds
the box and the other one opens it.

2) The background knowledge about the role of the
objects: During this kind of manipulation two objects
that are interacting fulfill a certain role. E.g. in the
task “driving a nail into something“ the roles“can
be driven in“ and“can hammer“ of the manipulated
objectsnail and hammerenable a hypothesis about
the task.

All fragments which are neither classified assymmetric
nor asasymmetriccoordinated manipulation are labeled as
uncoordinateddual-hand tasks.

According to these criteria a trajectory segmentation algo-
rithm was implemented, which extracts basic trajectories
like circular or linear moves from the relative trajectory
of both hands. A still unsolved problem is the detection of
irregular trajectories in an asymmetric movement. Based on
background knowledge like roles of objects in combination
with speed, acceleration and distance between manipulated
objects a statistical method for hypothesis extraction was
presented in [15]. Combining these two segmentation me-
thods a reliable detection of simple (with respect to the
fulfilled relative hand trajectory) asymmetric coordinated
manipulations has been realized.

B. Represetation of two hand tasks

For the representation of two arm manipulations the
Macro-operator structure has been extended in order to
enable the coordination of two arms. Hereby the following
criteria were taken into account:

• Synchronisation of coordinated and uncoordinated ac-
tions will be done through transitions between EO’s
or Macros.

• Coordinated subtasks will be encapsulated into
”
Dual

Hand EO’s“ (respectively Macro’s)
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Fig. 4. Representation of Dual Arm Tasks as a three Layer Macro
Operator. (Example

”
Open a cake bag-in-box-container“)

According to these requirements a three layer represen-
tation of dual manipulations (see Fig. 4) has been realized.
Grasp actions of the two hands are synchronized by the
precondition of the macros where asymmetric coordinated
actions are represented as a two arm Macro in the inter-
mediate layer.

V. COORDINATION OF TASK EXECUTION

The execution of coordinated tasks demands a me-
chanism for synchronisation of actions allowing a deter-
ministic switch between coordinated and uncoordinated
movements of the hands. Therefore a framework for coor-
dinated execution of tasks using condition/event Petri nets
was developed, enabling a mapping of coordinated Macro
operators to an execution system [16]. Among the existing
models of Discrete Event Systems, Petri nets have been
widely used to model dynamic systems [17]. In our work,
we use Petri nets to efficiently represent both control and
data flow within one formalism. A condition/event Petri
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Fig. 5. Petri Net for task execution of one arm

net is defined by the 4-tupleN = (P, T,A, m0), where
P = {p1, . . . , pnp} and T = {t1, . . . , tnt} are finite sets
of places and transitions.A is a set of arcs, subset of
(P × T ) ∪ (T × P ) and m0 is the initial marking. The
set of places describes the states of the system, and the set
of transitions defines events that can change the state of
the system.

TABLE I

CONDITION AND EVENTS FOR ONE ARM

Conditions (places) Events (Transitions)

S1 Arm is active T1 Task execution is completed
S2 Arm is ready T2 Task execution is not completed

Figure 5 represents a Petri net for modeling one arm
tasks. The associated places and transitions are given in
table I. The shown initial marking indicates the stateready
of the arm. The task execution can be invoked by firing
the transitionT2 which leads to the stateactive. The Petri
net in figure 6 results from the synchronous composition
of two one-arm nets for the coordination of dual-arm task
execution. The descriptions of the transitions and events
including the pre- and postconditions are given in table II
and III.

A1

A2

B2

B1

1 3

6 5

42

7

Fig. 6. Petri Net for dual-arm coordinated task execution

The coordination of the dual-arm motion takes place
through the common transitions 5, 6, and 7. Firing the

transition 5 or 6 denotes respectively the task execution
through the left arm or the right arm under the condition
that both arms are ready. Firing of transition 7 denotes the
simultaneous and parallel execution of tasks through both
arms.

In order to provide a mechanism for dealing with the
duration of the execution of EO’s, deterministic time delays
are introduced for transitions.

TABLE II

CONDITIONS FOR THE DUAL-ARM PETRI NET

Conditions

A1 Left arm is active
A2 Left arm is ready
B1 Right arm is active
B2 Right arm is ready

TABLE III

TRANSITIONS AND THEIR MEANING FOR THE DUAL-ARM PETRI NET.

Events Description Pre- Post-
condition condition

1 Left arm task is completed A1 A2

2 Right arm task is completed B1 B2

3 New task for left arm A2 A1

4 New task for right arm B2 B1

5 New task for left arm A2, B2 A1, B2

6 New task for right arm A2, B2 A2, B1

7 New task for left and right arm A2, B2 A1, B1

VI. EXPERIMENTAL SETUP

As an experimental execution system the humanoid
robot ARMAR has been used. Coordinated tasks learned
by our PbD-system were mapped, adapted and executed on
this robot. The following section gives a brief description
of the robot system.

A. The Humanoid Robot ARMAR

The humanoid robot ARMAR [18] has 23 mechanical
degrees-of-freedom (DOF): 7 for each arm, 2 for the head,
3 for the torso and 1 for each of the jaw grippers. The arms
are designed in an anthropomorphic manner and resemble
the shape and motion behavior of the human arm. Each
arm is equipped with a 6 DOFs force torque sensor [19]
on the wrist. Different inverse kinematics algorithms [20]
are provided for the programming of manipulation tasks.

B. Control Architecture

This section shows how a Macro operator is processed
through the control architecture of the robot and further
describes the correlation between the Macro operator and
the architecture layers. The control architecture [16] was
designed according to the following summarized global
criteria:

• Flexibility and modularity to cope with various tasks
and to allow the addition of further tasks and hardware
and software modules in a simple manner. This is a
very important feature for the process of integration.

• Real-time performance to allow a prompt response to
varying environments and exceptions which can occur
during the task execution.
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Fig. 7. The control architecture for coordinated dual-arm task execution.

The control system of ARMAR is organized hierarchi-
cally with three levels to handle the complexity of the
robot. A given task is decomposed into several subtasks,
representing the sequence of actions the subsystems of the
humanoid robot must carry out to accomplish the task
goal. The coordinated execution of a task requires the
scheduling of the subtasks and their synchronization with
logical conditions, external and internal events. Figure 7
shows the block diagram of the control architecture with
three levels:

• The task planning level specifies the subtasks for
the multiple subsystems of the robot. On this level
an adapted Macro operator is processed up to the
level of coordinatedEO’s/Macros orEO’s which are
then passed to the lower layer. Here the decision is
made which Macro will be executed and if needed an
alternative Macro will be instantiated. If no Macro is
specified subtasks can be derived from an implemen-
ted task description autonomously or interactively by
a human operator. Further, the necessary subsystem
controllers are selected.

• The task coordination level generates sequenti-
al/parallel primitive actions for the execution level in
order to achieve the given task goal. The subtasks are
provided by the task planning level. Here the coor-
dinated Macros orEO’s are processed with respect
to the synchronisation constraints. As on the planning
level the execution of the subtasks in an appropriate
schedule can be modified/reorganized by an operator
using an interactive user interface.

• The task execution level is characterized by con-
trol theory to execute specified sensory-motor control
commands (EO execution). This level uses task speci-
fic local models of the environment and objects, which
represent the active scene. In the following we refer

to those models asactive models.

The active models are first initialized by the global
models and can be modified and enhanced during the
progress of the task execution. Internal system events and
execution errors are detected from local sensor data. These
events/errors are used as feedback for the task coordination
level in order to take appropriate measures. For example, a
new alternative execution plan can be generated to react to
internal events of the robot subsystems or to environmental
stimuli.

C. Experiments for coordinated task execution

A simple task like
”
Opening a jar“ was chosen for

evaluating the execution of a dual-arm Macro generated
by our PbD system. The task consists of grasping the jar
with one hand (stabilize), grasping the lid with the other
hand (active), unscrewing the lid (asymmetric coordinated
action) and finally laying down the jar and the lid. The
macro specifies only the role of the hand as{active /
stabilize} and the condition that the active hand grasps
the lid when the relationGrasped(stabilize,jar)is true.
The planning level decides with respect to the relative
position between the robot and the jar which robot arm
takes the active respectively the stabilisation part. Further
the coordination layer synchronizes the grasping actions
as well as the following

”
unscrew“ task. The release

actions are performed in parallel as uncoordinated dual
manipulations.

VII. C ONCLUSION

This paper shows that dual-arm manipulations can be
programmed through a PbD system and that the learning
and the mapping process are supported by the segmentation
of two hand manipulations according to the proposed
classification. First results reveal that further investigations
are necessary to increase the robustness and reliability of



Fig. 8. Two initial start situations for the task execution (open a jar)

the interpretation of human demonstrations in the case of
complex dual-arm manipulation tasks and their execution.
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