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Abstract— Many supporting activities that future service
robots might perform in people’s homes depend on the ca-
pability to grasp and manipulate arbitrary objects. Easily
accomplished by humans, but very difficult to achieve for
robots, grasping involves dealing with a high-dimensional space
of parameters which include hand kinematics, object geometry,
material properties and forces. We believe that the way a
robot grasps an object should be motivated by the object’s
geometry and that the search space for stable grasps can be
dramatically reduced if the underlying object representation
reflects symmetry properties of the object that contain valuable
information for grasp planning. In this paper, we introduce
the grid of medial spheres, a volumetric object representation
based on the medial axis transform. The grid of medial spheres
represents arbitrarily shaped objects with arbitrary levels of
detail and contains symmetry information that can be easily
exploited by a grasp planning algorithm. We present the data
structure as well as a grasp planning algorithm that exploits
it and provide experimental results on various object models
using two robot hands in simulation.

I. INTRODUCTION AND RELATED WORK

Life expectancy in our society increases and elderly peo-
ple need assistance in their homes in order to lead self-
determined lifes despite diminishing physical strength. In
order to help people doing the household chores future
intelligent domestic robots have to be able to grasp and
manipulate all kinds of objects. Due to the large variety
of objects it is impossible to predefine the way objects are
grasped. Consequently grasp planning has to be done in an
automated fashion.

A. Grasp Planning

A variety of concepts and methods for grasp planning
has been presented over the last decades. One branch of
research focused on grasping at the contact level, where the
primary goal is to find a predefined number of contact points,
regardless of hand kinematics [1]. Some work [2] examines
measures for dexterity, equilibrium, stability and dynamic
behavior and investigates how grasps with these properties
can be synthesized.

Over the past years simulators such as GraspIt! [3], Open-
RAVE [4] and Simox [5] were introduced and now a large
body of work exists where grasp planning algorithms have
been developed and evaluated in simulators, taking advantage
of the fact that these simulation environments allow hand
kinematics, geometries of hands and objects, physical and
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material properties and environmental obstacles to be taken
into account. Vahrenkamp et al. [6] presented an integrated
approach that combines searching for a feasible grasp with
searching for collision free grasp motions. Berenson et al.
([7],[8]) introduced a grasp scoring function that considers
grasp quality as well kinematic reachability and obstacles in
the environment. Ciocarlie et al. [9] proposed to plan grasps
in a low-dimensional subspace of the hand configuration
space, resulting in the concept of eigengrasps. This work was
continued by Goldfeder et al. [10] who built a database of
grasps for many hands and objects and used shape similarity
to plan grasps by retrieving similar objects from the database.
In [11] they applied their method to novel objects by aligning
and matching partial 3D data to objects in the database in
order to find feasible grasps.

There exists a family of simulator-based grasp planning
methods that decompose objects into parts and plan grasps
on the individual parts. Miller et al. [12] presented the first of
these methods. He manually decomposed objects into boxes,
spheres, cylinders and cones and planned grasps on the in-
dividual primitives. Goldfeder et al. [13] represented objects
as a tree of superquadrics. Huebner et al. [14] presented a
method to approximate objects by a set of minimum volume
bounding boxes. While these methods based on the grasping
by parts paradigm effectively allow to prune the search space
of possible candidate grasps, their common limitation is
the fact that the result of the decomposition process cannot
approximate the original shape of the object with arbitrary
precision, which in turn may sacrifice potential high-quality
candidate grasps.

Recently, Aleotti et al. [15] presented a skeleton-based
approach that uses the Reeb Graph as an object represen-
tation. The object is topologically segmented into parts and
classified as member of a specific class of objects. Then
grasps are planned on the part queried by the user. The
work is aimed at planning grasps across similar objects on
the assumption that an ontological description of the class is
given a priori.

In our previous work [16], we presented a first step toward
an object representation for grasp planning that follows
the idea of the grasping by parts paradigm but avoids
sacrificing potential high-quality candidate grasps because of
poor object geometry approximation. We introduced a grasp
planning algorithm based on the medial axis that evaluates
local symmetry properties of objects in order to generate
geometrically meaningful candidate grasps that have a high
probability to result in force-closure grasps. The algorithm
identified structures in slices of the medial axis and generated



candidate grasps depending on which slice structures were
present in the object. This approach had the limitation that
candidate grasps could only be generated for objects whose
medial axis contained a predefined set of slice structures. In
order to deal with more complicated object geometries, the
user had to define additional medial axis slice structures.

In this paper we introduce a novel grasp planning method
that eliminates the limitations of our previous method [16] in
the sense that it works for arbitrarily shaped objects without
the need for the user to define structures in the medial axis
to be identified by the grasp planner. We achieve this by
representing the object as a three-dimensional grid of medial
spheres, an object representation based on the medial axis
transform, which approximates object geometry with arbi-
trary precision, allows for geometric analysis of individual
regions of the object geometry and contains object symmetry
information which is exploited by our grasp planner. Our
contribution is the object representation and the associated
grasp planning algorithm.

The remainder of this paper is organized as follows.
In section II, we present our object representation and its
construction. In section III, we explain the details of our
new grasp planning algorithm. In section IV, we show ex-
perimental results using two robot hand models and various
object models in the OpenRAVE [4] simulation environment.
In section V, we conclude the paper with a summary and
some ideas for future research.

II. AN OBJECT REPRESENTATION FOR GRASP PLANNING

In this section we describe a novel object representation
which will serve as a basis for our new grasp planning
method explained later in this paper. The core idea of the
work presented in this paper is that a grasp planning method
should benefit from an object representation that describes
an object’s geometry in terms of volume as opposed to
common mesh representations that only describe the surface
of the object. Our novel object representation is based on
the medial axis transform (MAT) of an object. The medial
axis (MA), originally introduced by Blum [17], is a topolo-
gical representation of an object that represents objects by
inscribing spheres of maximum diameter, i.e. spheres that
touch the boundary of the original shape at two or more
distinct points. While the MA is the union of the inscribed
spheres’ centers, the MAT additionally contains the radii of
the spheres. The MAT is a complete shape descriptor, i.e. it
contains all necessary information to reconstruct the original
object’s shape. For the experiments in this paper, we first
compute the MA and then reconstruct the MAT from the
MA point cloud and a surface point cloud of the respective
object.

A. Reconstructing the MAT from the MA

In this section we explain a simple algorithm to reconstruct
the MAT from the MA. In a first step, we need to obtain
a surface sampling point cloud of the object. This can be
achieved in at least two different ways. If the surface mesh
of the object is sufficiently dense, we can simply use the

vertices of the mesh as a surface point cloud. Otherwise, a
sampling method based on ray collision as described in [7]
can be used. In a second step we compute the medial axis
(MA) of the object. Computing the MA in a robust fashion
is quite hard [18]. Therefore, we use the Tight Cocone tool
[19] for this purpose which calculates a medial axis point
cloud, based on the surface point cloud from the previous
step. The third step consists in the reconstruction of the MAT
of the object based on the MA point cloud and the surface
point cloud. As described above, the MAT inscribes spheres
of maximum diameter into the shape. The spheres have to
touch the shape boundary at least at two different points. For
each medial axis point, we are interested in the corresponding
sphere radius and the nearest points on the object’s surface. A
brute-force approach would be to compute the distances to all
surface points. Given a surface point cloud with n points and
a MA point cloud with m points, nm distance computations
would have to be performed, which becomes prohibitively
expensive for bigger input data sets. To avoid exhaustive
computation of distances, we use a cell-based algorithm for
nearest neighbor search inspired by [20]. Bentley et al. [20]
describe an algorithm which uses a precomputation step to
sort the point cloud and the query point into a cartesian grid
of cells. This can be achieved in linear time with respect
to the size of the input point cloud. During the subsequent
nearest neighbor search, first the cell containing the query
point is identified. Then, only neighbor cells to the first cell
are examined for possible nearest neighbor points. The search
proceeds from inner to more outer layers of neighbor cells
around the first cell until the first neighbor point p has been
found. In the concluding step some more cells are examined
to check if there is a closer neighbor than p. We apply
this algorithm to our problem of finding the closest surface
points for each medial sphere’s center. We use the following
criterion to sort the surface points as well as the medial axis
points into a three-dimensional cartesian grid structure: ix

iy
iz

 =

 bnx(x− xmin)/(xmax − xmin)c
bny(y − ymin)/(ymax − ymin)c
bnz(z − zmin)/(zmax − zmin)c

 (1)

In equation (1) the variables ix, iy, iz are the indices of
the cell in the grid where a point q = (x, y, z) is stored.
nx, ny, nz denote the number of cells of the grid along
the respective coordinate axes. xmin, ymin, zmin denote the
minimal coordinates, xmax, ymax, zmax the maximal coor-
dinates of the axis-aligned bounding box around the surface
point cloud. Bentley et al. [20] used in their work a grid
of size (n/C)

1
2 by (n/C)

1
2 cells for their two-dimensional

point cloud, where n denotes the number of points in the
point cloud and C is referred to as the cell density, i.e.
the expected number of points in each cell. In our case,
the surface point cloud is contained in a cuboid whose side
lengths are not necessarily equal. Yet, in order to allow for
Euclidean distance computations on our grid, the individual
cells have to be cubes. Therefore we choose our grid to be
an array of size k1(n/C)

1
3 by (n/C)

1
3 by 1

k1
(n/C)

1
3 cells,

where k1 is the ratio of the longest edge to the shortest



edge of our surface point cloud’s axis-aligned bounding box.
Good parameter values are C = 2 for thin objects and
C = 4 for the general case. Smaller values of C lead to less
points per cell but more cells to be searched, making the
process of searching cells more expensive than the distance
computations between MA points and surface points. Given
this cell-based data structure, for each MA point we are now
able to reconstruct the sphere radius and the points where the
sphere touches the object’s surface simply by determining
the cell c0 which contains the MA point and then searching
for nearest surface points by considering neighbor cells with
growing distances to c0.

B. The grid of medial spheres

We represent our object as a collection of medial spheres
which we reconstructed as explained in the previous section.
Each individual sphere has the following attributes:

• The position X of the sphere’s center.
• The sphere’s radius r.
• The points ps where the sphere touches the object’s

surface.
• The object angle αo [21], also referred to as the bisector

angle [22], solid angle [23], medial angle [24] or sepa-
ration angle ([25],[26]), which describes the maximum
angle included by two vectors from the sphere’s center
to two different nearest surface points psi and psj

touched by this sphere (see Fig. 1b, 1c).
In order to allow for efficient evaluation of the spheres
in each sphere’s neighborhood we use again the grid data
structure presented in the previous section. By sorting the
spheres with respect to their center coordinates Xi into the
grid cells, we obtain a grid of medial spheres on which we
will perform grasp planning in the next section.

III. GRASP PLANNING ON A GRID OF MEDIAL SPHERES

Our approach for grasp planning consists of three steps.
In the first step we select the spheres from the grid that
should be considered for grasp planning. In the second
step, we examine the local neighborhood of each of the
selected spheres and analyze each neighborhood’s symmetry
properties. In the third step, we use the results of the second
step to generate candidate grasps which are then tested for
force-closure. We begin with the selection of spheres for
further consideration.

A. Selection of spheres to analyze for grasp planning

We now have a three-dimensional grid of possibly thou-
sands of spheres describing our object’s geometry. Which
of these spheres contain valuable information that should
be considered for generating candidate grasps? As explained
earlier in this paper, the MAT is a complete shape descriptor,
i.e. it contains all information to reproduce the original shape.
However, for grasp planning, we do not need to consider
all the details of the object’s geometry, but only the most
relevant properties. A very basic class of grasps are grasps
consisting of two virtual fingers which oppose [27] each
other and touch the object at two opposing sides. The two

(a) (b) (c)

Fig. 1: Shape approximation by inscribing spheres: Rectan-
gular box with all spheres (a), spheres with object angle
αo ≈ 180◦ (blue) and αo ≈ 90◦ (red) highlighted (b),(c).

virtual fingers can be the two jaws of a parallel jaw gripper
as well as the thumb of an anthropomorphic robot hand
opposing the other fingers of the hand. Our goal is to identify
spheres in our object representation that can be used to
generate this kind of grasps. In our approach we consider
two key parameters of the spheres: the object angle αo and
the diameter d.

We use the object angle αo as an indicator of a sphere’s
significance for grasp planning. Spheres with big object
angles contribute to a rough approximation of the object’s
shape and volume whereas spheres with small object angles
rather describe surface details of the object. In our object
representation, a box-shaped object, for example, consists
of spheres with αo ≈ 180◦ which describe a rough appro-
ximation of the object’s shape and volume and of spheres
with αo ≈ 90◦ which describe the edges and corners of the
box (Fig. 1). For our grasp planning method we are more
interested in the rough shape of the object, which reflects
the object’s thickness and its symmetry properties. In the
remainder of this paper, we consider only spheres with an
object angle of αo ≥ 120◦, for the following two reasons:
On the one hand, this eliminates edges and other surface
details as well as possible instabilities of the MA. On the
other hand, it preserves the overall symmetry properties of
the object to be evaluated by our grasp planning algorithm.

The sphere diameter d is important for the following
considerations: First, spheres might be too big for the hand
to grasp. In this case we can still use them to analyze the
rough shape of the object, but it does not make sense to
generate candidate grasps on them. Second, spheres might be
too small to be interesting for grasping. Third, small spheres
may contribute to the object’s surface details. Therefore, it
can be useful to discard them in some cases, as we will see
later in this paper.

B. Analyzing the symmetry properties of a sphere’s local
neighborhood

After having selected a reduced set of spheres with αo ≥
120◦ from our object representation, our next goal is to
extract symmetry properties of the object from this reduced
set of spheres. We accomplish this by using the following
method: For each sphere s in the remaining set of spheres we
consider the spheres sN in a local spherical neighborhood
N of search radius rsearch around s. As the spheres are
stored in a grid, we can efficiently retrieve these neighbor



Fig. 2: Estimating the local neighborhood of spheres. Whole
object (left), magnified details (right). Big dots indicate
sphere centers, with colors from black over red and green
to blue symbolizing growing values of ρev . Red and green
lines indicate first (red) and second (green) eigenvectors ~e1
and ~e2. A small blue dot indicates the center of gravity of
each sphere’s local neighborhood, connected to the sphere’s
center by a blue line. The light blue area indicates the size
of the local neighborhoods.

spheres by considering neighbor cells of the cell containing
the currently considered sphere s. We perform principal
component analysis (PCA) on the sphere centers of sN . Let
~e1 and ~e2 be the first two eigenvectors and λ1 and λ2 the
corresponding eigenvalues resulting from the PCA. To decide
which method should be used to generate candidate grasps,
we evaluate the ratio ρev of the first two eigenvalues λ1 and
λ2:

ρev =
λ2

λ1
(2)

By comparing the value of ρev to two constants ρaxis and
ρplane we classify the sphere s into one of the following
categories:

• If ρev ≤ ρaxis we assume that the sphere centers of sN

are part of a local symmetry axis.
• If ρaxis < ρev < ρplane we assume that the sphere

centers of sN are part of a local symmetry plane, and
that the currently considered sphere is located at the rim
of this plane.

• If ρev ≥ ρplane we assume that the sphere centers of sN

are part of a local symmetry plane, but that the currently
considered sphere is located inside the plane.

For all experiments in this paper, we used the values ρaxis =
0.01 and ρplane = 0.4, which were determined empirically.
Fig. 2 illustrates the results of the PCA, where the sphere
centers are colored differently depending on the respective
value of ρev . There is one special case where the symmetry
properties of a sphere’s local neighborhood N cannot be
analyzed. This is the case if N does not contain any further
spheres. This occurs if the object’s shape or parts of it are
perfectly spherical. In our current implementation, we do not
treat this case.

C. Generating candidate grasps

In the previous section we stated how we use PCA to
identify symmetry structures in local regions of the object’s
MAT. In this section we use this information to generate

candidate grasps that can later be tested for force-closure. Be-
fore we explain our method for candidate grasp generation,
we define which parameters we use to describe a candidate
grasp. From Berenson’s grasp parameters [7] we adopt the
approach direction Pd of the hand toward the object and the
preshape Pp which is a vector of joint angles of the hand.
We introduce the following new parameters:

• A 3D grasp target point Pg the hand should approach
during grasping. This is similar to Berenson’s Pt, but
in our case it is not necessarily located on the object’s
surface.

• A hand orientation vector Po which can be thought
of as an axis the hand is supposed to wrap around
during a parallel grasp for a cylindrical object. For each
candidate grasp, Po completely defines the hand’s target
orientation.

As already stated above, we distinguish three kinds of
outcomes of the PCA of a sphere’s local neighborhood. In
the following, we explain how we use the results of the PCA
to generate candidate grasps. We only generate candidate
grasps for spheres that are not too big to be grasped by the
respective robot hand, which can be easily determined from
the respective sphere’s diameter. In all cases, the sphere’s
center is used as the grasp target point Pg for the hand.

1) Local Symmetry Axis: For spheres with a local symme-
try axis, we generate multiple candidate grasps with approach
directions Pd of the hand orthogonal to the symmetry axis.
The direction of the symmetry axis is the first eigenvector
~e1 from the PCA. It serves as the hand’s orientation vector:
Po = ~e1.

2) Rim of a Local Symmetry Plane: For spheres on the
rim of a local symmetry plane, we generate candidate grasps
with approach directions Pd of the hand orthogonal to the
rim. The two eigenvectors ~e1 and ~e2 from the PCA describe
the orientation of the local symmetry plane. ~e1 is parallel
to the rim of the local symmetry plane and serves again
as the hand’s orientation vector: Po = ~e1. The approach
direction Pd of the hand can be computed from ~e2. In order
to make sure that the hand’s approach direction points toward
the rim from the outside of the local symmetry plane, we
consider the vector ~vCOG from the sphere’s center to its
local neighborhood’s center of gravity COGN . If ~e2 and
~vCOG include an angle β ≥ 90◦, then we set Pd = −~e2,
otherwise Pd = ~e2.

3) Interior of a Symmetry Plane: For spheres located
inside a local symmetry plane, we do not generate any
candidate grasps.

IV. EXPERIMENTS
In this section we present some experiments for the grasp

planning algorithm described above. We use models of
the Barrett hand and of the hand of our humanoid robot
ARMAR-III [31] to test our grasp planning algorithm in
OpenRAVE. In our experiments we assume that the biggest
sphere the ARMAR-III hand can grasp has a diameter of
9.4cm, whereas the corresponding value for the Barrett hand
is assumed to be 14.0cm. We use a parallel preshape for all



Fig. 3: Object set 1: objects taken from the Chen mesh
segmentation benchmark database [28].

Fig. 4: Object set 2: objects scanned using a 3D laser
scanner([29],[30]).

candidate grasps. We perform experiments on two different
sets of objects.

Object set 1 (Fig. 3) contains some objects from the Chen
mesh segmentation benchmark [28], whereas object set 2
(Fig. 4) contains some objects that we scanned with a 3D
laser scanner ([29],[30]). The upper rows of Fig. 5 and 6
show the grid of medial spheres representations of some of
our test objects with colors ranging from red over green to
blue for increasing sphere diameters. The middle and lower
rows depict the respective reduced set of sphere centers for
grasp planning, with estimations of the symmetry properties
of the spheres’ local neighborhoods and a set of derived
candidate grasps. The candidate grasps are represented by
lines indicating their approach directions Pd. Green lines
depict candidate grasps originating from a local symmetry
plane, whereas orange lines depict candidate grasps origi-
nating from a local symmetry axis. Short magenta lines at
the end of the approach directions indicate the respective
hand orientation Po. The depicted candidate grasps are those
candidates generated for the ARMAR-III hand. Clusters of
bright pink dots in the pictures indicate centers of spheres
that are too big for the ARMAR-III hand to grasp. Therefore
no candidate grasps were generated for these spheres.

In both of our two experiments we randomly pick 200
spheres from the reduced set of spheres, generate candidate
grasps for these spheres and test these candidates for force-
closure. The test procedure for the candidate grasps follows
the approach described in [7]. For each candidate grasp, the
hand is first set into the grasp target point Pg with the hand’s
palm direction aligned with the candidate grasp’s approach
direction Pd and the hand rotated around the approach
direction according to the orientation vector Po. The hand
is then retracted from the object along −Pd until it does not
collide anymore with the object’s surface mesh. Then the

Fig. 5: Upper row: Grid of medial spheres representation
for some objects from object set 1. Middle and lower row:
reduced set of sphere centers with generated candidate grasps
for these objects.

Fig. 6: Upper row: Grid of medial spheres representation
for some objects from object set 2. Lower row: reduced set
of sphere centers with generated candidate grasps for these
objects.



fingers are closed around the object until collision occurs or
the joint limits are reached. Based on the contacts between
the object’s surface mesh and the hand we compute the
epsilon measure for force-closure [32]. For all experiments,
we use a point contact model with Coulomb friction and
assume a friction coefficient of 0.5.

In our first experiment we use object set 1 (Fig. 3). Most
of these objects are complex objects, decomposable into
distinct parts. Most of them have relatively flat surfaces with
few or no details. They are big relative to the robot hands,
so not all of their components can be grasped. It matters
which part of the object is approached by the hand, from
which direction and with which orientation of the hand. For
all objects we test a full-size version as well as a version
which has been scaled down to 50% of the original size.
The results of the experiment are given in Table I, where in
the ID column the index of the respective object in the Chen
mesh segmentation benchmark is given. For most of the full-
scale objects, well above 50% of the tested candidates are
force-closure grasps. For the half-sized objects the results
are similar, though in some cases the percentage of force-
closure grasps drops significantly. This is the case for the
glasses, and in case of the Barrett hand, also for the monster
and tea kettle. The reason for this is that for these objects
many candidates where generated for parts of the object that
are now too small to be stably grasped, like the earpieces
of the glasses, for example. In our second experiment we
consider object set 2 (Fig. 4). These are more compact
objects, not easily decomposable into basic parts. In contrast
to object set 1, these objects are about the same size as
our robot hands. However, the majority of these objects has
considerable surface details. In this experiment we consider
only those spheres of the reduced sphere set for candidate
grasp generation that have a diameter d ≤ 0.3dmax, where
dmax is the diameter of the biggest sphere of the respective
object. This keeps the planner focused on the rough geometry
of the object and avoids consideration of surface details. The
effect can especially be seen for the clown, dog and lawn
gnome objects in Fig.6 where the planner reliably identifies
the vertical main axis of the objects and generates candidate
grasps accordingly. The results of the experiment are given
in Table II. Again, for most of the objects, well above 50% of
the tested candidates are force-closure grasps. Some typical
grasps generated by our planner are depicted in Fig. 7.

Fig. 7: Some example grasps generated by our method.

TABLE I: Percentage of force-closure grasps among the
tested candidate grasps for object set 1

Objects ARMAR-III hand Barrett hand
ID name scale 1.0 scale 0.5 scale 1.0 scale 0.5
1 Female doll 71.3% 54.6% 53.13% 37.9%

41 Glasses 93.9% 7.8% 73.7% 10.7%
81 Ant 94.4% 71.1% 61.3% 45.7%

101 Chair 89.6% 49.2% 73.9% 72.2%
125 Octopus 53.7% 55.2% 26.9% 44.7%
141 Table 91.9% 92.5% 94.6% 85.0%
161 Teddy 100.0% 83.3% 86.7% 51.2%
225 Fish 76.5% 83.3% 68.4% 81.1%
245 Bird 75.0% 68.3% 75.0% 65.6%
290 Monster 70.5% 64.7% 67.8% 38.2%
305 Bust 50.0% 70.0% 100.0% 92.9%
361 Vase 76.8% 65.3% 69.6% 55.1%
379 Tea kettle 78.9% 63.2% 75.7% 31.3%
390 Giraffe 85.5% 68.3% 71.4% 56.0%

TABLE II: Percentage of force-closure grasps among the
tested candidate grasps for object set 2

Objects ARMAR-III hand Barrett hand
Clown 63.5% 61.2%
Elefant 75.3% 76.0%

Owl 78.0% 68.2%
Spheric fish 59.0% 78.3%
Lawn gnome 53.1% 57.7%

Heart 89.0% 77.0%
Dog 63.7% 69.2%

Sitting cat 64.9% 59.5%
Lying cat 80.7% 80.7%

Moon 58.9% 64.4%
Mushroom 80.0% 55.5%

Turtle 57.1% 70.3%
Seal 73.5% 59.2%
Star 44.4% 66.7%

In the following, we would like to illustrate some ad-
vantages of our method. Our method generates grasps only
on parts of the objects that are not too thick for the hand.
Consider for example Fig. 8. For the full-scale giraffe (Fig.
8a) the algorithm generates only grasps on the head (Fig. 8b),
the neck, the legs, the tail (Fig. 8c), but not on the animal’s
torso. For a 25% scale version of the animal also the torso
becomes graspable (Fig. 8d). We can also tell the planner to
ignore thin parts of the object and to grasp only parts where
the object’s thickness is close to the robot hand’s maximum
graspable diameter (Fig. 8e, 8f). The algorithm also reliably
finds grasps for objects where the ways the object can be
grasped are very restricted due to size, like for the bust in
Fig. 9. Especially for big objects, like the tea pot or the
vase in Fig. 10 our approach also finds mainly grasps at
the handles, without any semantic knowledge such as task
dependency, but only due to geometric considerations, as in
both cases the hollow body is too thick to grasp.

We used an Intel Core 2 Duo T9300 @2.5Ghz with 4GB
RAM and Ubuntu 8.04 LTS as a test platform. Performance
of the individual methods was as follows. MA computation
via Tight Cocone (section II-A) took about 5s to 30s per



(a) (b) (c)

(d) (e) (f)

Fig. 8: Candidate grasp generation depending on sphere
diameter. For the full-scale giraffe (a) candidate grasps are
only generated on the extremities (b,c). For the 25% scale
giraffe also the torso can be grasped (d). Considering only
big spheres for candidate grasp generation (e,f).

Fig. 9: The algorithm also finds grasps for objects where the
ways the object can be grasped are very restricted.

object, depending on the actual size of the input surface point
cloud. MAT reconstruction (section II-A) took beetween 13s
and 2313s for the objects of object set 1, with an average
of 692s, and 127s to 314s for the objects of object set
2, with an average of 228s, depending on the size of the
MA point cloud and the size of the surface point cloud.
Given the grid of medial spheres, symmetry analysis and
candidate grasp generation (sections III-B and III-C) took
about 10 to 100ms per sphere, depending on the number
of spheres in the local neighborhood. Testing of candidate
grasps (section IV) took about 0.5s per candidate grasp. At
first glance, some of these computation times might seem
quite long. However, we would like to point out some further
facts. For the experiments in this paper, we implemented the
methods for MAT reconstruction, candidate grasp generation
and candidate grasp testing in Python. Considerable speedups

Fig. 10: The algorithm finds grasps on handles simply due
to geometric considerations, without semantic knowledge.

should be possible by reimplementation of these methods
in C++. Above that, a special case is the MAT reconstruc-
tion. For the sake of simple implementation we chose to
reconstruct the MAT from the MA. However, we point out
that during MA computation, Tight Cocone computes all the
MAT parameters (nearest surface points, sphere radii, object
angles) internally [19], but unfortunately does not report
this information in its output. Therefore, we are optimistic
that direct computation of both the MAT and the grid of
medial spheres should be possible with computation times
comparable to the MA computation time with Tight Cocone,
or even faster, if GPUs are used for parallelization.

V. DISCUSSION AND CONCLUSION

In this paper, we presented a novel object representation
for grasp planning, the grid of medial spheres, which is
based on the medial axis transform as well as a novel grasp
planning algorithm that operates on this representation. We
performed experiments on two different sets of objects and
demonstrated that many of the generated candidate grasps
result in force-closure grasps, while at the same time the
generated grasps are geometrically meaningful.

The approach presented in this paper overcomes several
restrictions and limitations of our previous work in [16]. As
our new algorithm considers only local regions of the object
geometry, it is not restricted to objects with special geometric
properties, but can be used for objects of arbitrary shape.
As the grid of medial spheres representation is based on a
complete shape descriptor, it can approximate the object’s
shape very accurately. Yet, the representation allows the
grasp planner to ignore surface details of the object in order
to exploit local symmetry properties and to focus on parts
of the object where the object’s local thickness is suitable
for grasping with a given robot hand. This way, the grid



of medial spheres representation allows to effectively reduce
the search space for force-closure grasps without sacrificing
potentional high-quality candidate grasps due to poor object
geometry approximation.

In theory, for each of the spheres in our representation
one or more candidate grasps can be generated. While
generating candidate grasps on a per-sphere basis produces
high-potential candidate grasps for arbitrary shapes, there are
some special cases, where this approach does not generate
those grasps a human being would anticipate. This is the case
for objects with concavities, where the typical grasps used by
human beings would be grasps where the fingers encompass
the concavity without reaching into it. For a coffee cup, for
example, our approach would generate grasps at the handle
and at the rim of the concavity, but no grasps that encompass
the concavity of the cup from the outside without reaching
into it. A possible solution to that limitation might be to
compute the medial axis transform of the concavity, using
the original medial axis transform of the object as input, so
the concavity’s properties could be exploited for candidate
grasp generation. We leave the investigation of this idea as
well as the validation of the generated grasps on our real
ARMAR-III robot to future work.
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