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Abstract— The problem of accurate 6-DoF pose estimation
of 3D objects based on their shape has so far been solved
only for specific object geometries. Edge-based recognition
and tracking methods rely on the extraction of straight line
segments or other primitives. Straight-forward extensions of
2D approaches are potentially more general, but assume a
limited range of possible view angles. The general problem is
that a 3D object can potentially produce completely different
2D projections depending on the view angle. One way to tackle
this problem is to use canonical views. However, accurate shape-
based 6-DoF pose estimation requires more information than
matching of canonical views can provide. In this paper, we
present a novel approach to 6-DoF pose estimation of single-
colored objects based on their shape. Our approach combines
stereo triangulation with matching against a high-resolution
view set of the object, each view having associated orientation
information. The errors that arise from separating the position
and orientation computation in first place are corrected by
a subsequent correction procedure based on online 3D model
projection. The proposed approach can estimate the pose of a
single object within 20 ms using conventional hardware.

I. INTRODUCTION

Shape-based pose estimation of 3D objects has so far been
addressed mostly for specific object geometries. Edge-based
recognition and tracking methods rely on the extraction of
straight line segments or other primitives [1], [2], [3], [4],
[5], [6]. Extensions of 2D approaches such as the generalized
Hough transform [7] or geometric hashing [8], the latter
for practical application also relying on the extraction of
primitives or interest points, in addition assume a limited
range of possible view angles, as it is also the case in [9].

It is an accepted fact that 3D shapes can in general
not be represented by a single 2D representation [10]. The
reason is that a 3D object can potentially produce completely
different 2D projections depending on the view angle, as
illustrated in Fig. 1. One way to tackle this problem is to use
canonical views, which were introduced by the biological
vision community [11] and later became of interest in the
computer vision community [12], [13]. The general idea
of canonical views is to represent an object by a reduced
number of views that are sufficient to cover all possible
appearances of the object. A suitable data structure for
storing and arranging such views is an aspect graph; a
survey is given in [14]. However, such representations are
mainly used for recognition and a rather coarse localization
of the object; an accurate shape-based 6-DoF pose estimation
requires more information than matching of canonical views
can provide and must be regarded as a separate problem.

Other approaches model the appearance of an object by

one or several 2D contours. Similarly to canonical views,
the full pose of the object, i.e. rotation and translation in
3D space, cannot be derived accurately on the basis of
deformable 2D contours directly.

Fig. 1. Different views of a measuring cup.

Traditional model-based recognition and pose estimation
methods rely on relatively simple object geometries. Straight
line segments can be mapped very efficiently to the image
and correspondences between 2D points or lines and 3D
model points can be established easily. These correspon-
dences build the input to an optimization approach. However,
when dealing with more complex shapes, such approaches
become inapplicable. In particular, curved surfaces can be
modeled accurately only by a multiplicity of polygons,
leading to a substantially higher computational effort for 2D
projection. Furthermore, the contour of the object cannot be
expressed by straight line segments of the model, making
both contour and correspondence computation a complicated
and computationally expensive task.

In the recent past, global appearance-based recognition
and pose estimation methods have become less popular; the
trend goes toward local appearance-based methods using
point features (e.g. [15], [16]) or region-based features (e.g.
[17]). However, such approaches are only applicable for
objects that exhibit such local features. For single-colored
objects (e.g. Fig. 1) this is not the case.

In the following, a novel approach to the problem of
shape-based 6-DoF pose estimation of globally segmentable
objects will be presented. As the focus is on accurate pose
estimation, the segmentation routine used for pre-processing
is not of particular interest. Throughout the experiments, a
simple color segmentation method operating in HSV color
space was utilized, which achieves very good segmentation
results using fixed color models.

We will first briefly summarize our previous work on
this problem in Section II, and then present our novel pose
correction method in Section III. Results of an experimental
evaluation with simulated image data as well as real image
data from the humanoid robot ARMAR-III [18] operating in
a kitchen environment are given in Section IV.



II. BASIC APPROACH

Our basic approach to recognition and pose estimation
of single-colored objects has been presented in [19] and is
summarized in this section, as it builds the starting point for
the subsequent improvements.

Color blobs are segmented and matched between the left
and right view of a stereo camera system. Region candi-
dates that result from this step are normalized to a fixed
size and matched against a view database. To achieve a
higher robustness, the matching is performed on the basis of
gradient images of the normalized views. The matching is
speeded up by reducing the normalized views of size 64×64
to 64 dimensions using PCA (see [20] for an analysis of the
number of dimensions); the best matching view is computed
as the nearest neighbor in the eigenspace. In the following,
the basic 6-DoF pose estimation method is explained, which
builds the basis for the correction procedure explained in
Section III.

Ideally, for appearance-based 6-DoF pose estimation with
respect to a rigid object model, for each object, training views
would have to be acquired in the complete six-dimensional
space i.e. varying orientation and position. The reason for
this is that not only the orientation influences the projected
appearance of an object, but also the translation does. In
other words, an object with the same orientation appears in
a different way if its position changes, as illustrated in Fig. 2.

Fig. 2. Illustration of the influence of the position on the appearance.
The views were generated with the same orientation of the object, only the
position was modified.

However, in practice it is impossible to store views cover-
ing the full six-dimensional space of possible object poses.
Therefore, we solve the problem by calculating position and
orientation independently in first place.

The basis for the calculation of the position is the result
of stereo triangulation between the centroids of the matched
regions in the left and the right image. However, the result
varies with the view of the object. As shown in [19], a 3D
correction vector ct can be defined, which is added to the
triangulation result during the pose estimation process.

As already discussed, the projected appearance of an
object is influenced by both the orientation and the position
of the object. Therefore, the introduced position correction
vector is only accurate if the object is located at the same
position it was trained with when computing and storing the
position correction vector. In all other cases, the correction
can only be an approximation. An accurate solution to this
problem is presented in Section III-B.

The orientation of an object is calculated on the basis of
the rotational information that was stored with each view
during the acquisition process. However, assuming that the
translation for each stored view was zero in the x- and y-
component – the training views are generated in the center
of the left camera image – causes an error if the object is
not located in the center of the image.

As a conclusion, in the basic approach presented in this
section, for the case of the object being located in the center
of the left camera image, a relatively accurate pose estimate
is calculated as follows:

t = f(pl,pr) + ct (1)
R = R0 (2)

where pl, pr denote the centroids of the matching regions
in the left and right image, f : R2 × R2 → R3 is the
transformation performing the stereo triangulation for two
matching centroids, ct is the position correction vector, and
R0 is the stored rotation for the matched view, given as a
rotation matrix. Precise correction methods for the general
case are introduced in the Sections III-A and III-B. Note that
another way for achieving a high precision without further
corrective calculation is to foveate the object of interest in the
left camera image. By doing this, the pose of only one object
at a time could be estimated accurately, which, however,
would be sufficient for grasping a single object with a robot
that has an active head.

III. POSE CORRECTION

The approach that has been proposed in Section II is
purely appearance-based i.e. no model is needed for the
acquisition of the views of the object. However, the pose
estimate is error-prone since the position and orientation are
treated separately. As already mentioned, an accurate pose
estimate is computed only when the object is located at the
same position it was trained at.

For computing an accurate pose estimate in the general
case, knowledge about the 3D shape of the object is nec-
essary. In the following, we will present a pose correction
method that utilizes a 3D model of the object in order to
compute and compensate the pose error online. Furthermore,
using a 3D model offers the benefit that the view set can be
generated in simulation, not requiring an expensive hardware
setup for view acquisition.

A. Orientation Correction

As already discussed, the core idea of the pose estimation
procedure is to decouple the determination of the position
and the orientation in first place, in order to make the
problem tractable. However, this decoupling has the effect
that the rotation information stored with each view is only
valid if the object is recognized at the same position in
the image it was learned with. The influence of the object
position on its appearance is illustrated in Fig. 2.

The error that is caused by a deviating position can be
corrected analytically. Let the position of the object in the
training view be tl and the position in the current view be



t, both being specified in the camera coordinate system. The
idea is to assume a spherical image sensor and to calculate
the rotation Rc that is necessary to rotate the projection of
tl to t, with the origin of the rotation being the projection
center as the center of the image sensor sphere.

An object at the position tl with its orientation being
described by the rotation matrix R0 produces a specific
appearance when projected on the spherical image sensor. If
rotating the object with the rotation matrix Rc, i.e. rotating
its position and orientation, then it produces the exact same
appearance at a different position of the image sphere.

Thus, when retrieving the stored rotation information R0,
assuming that the object producing the current view is
located at the position tl, the object must be rotated around
the projection center to its true position t to produce the
same appearance at the actual position of the image sensor.
Therefore, the only thing that has to be done for correcting
the rotation is to apply the corrective rotation Rc to the
retrieved rotation R0:

R = RcR0 (3)

with Rc being defined by:

Rc tl = t (4)

In order to be able to compute the corrective rotation
Rc, the vectors tl and t must have been normalized
to the same length beforehand. This normalization is
legitimate, since a differing distance of the object to the
projection center essentially causes a different size of its
appearance, when being moved along the principal axis.
Note that many rotation matrices Rc satisfy the condition
of Eq. (4), but that rotation matrix Rc is searched that
directly transfers tl to t, without using the undetermined
degree of freedom. The matrix Rc is thus computed
by RotationMatrixAxisAngle(tl × t, Angle(tl, t, tl × t))
(see [20], Appendix A.4). The effect of the orientation
correction is shown in Fig. 3 for an example scene.

In our experiments, we produced the training views so that
the object was located at the center of the left camera image.
The world coordinate system was the camera coordinate
system of the left camera. Therefore, the position of the
object was t = (0, 0, z)T throughout the acquisition of
the training views, with z being constant. The origin of the
object coordinate system was set to its center of mass.

Fig. 3. Effect of the orientation correction on an example scene. Left: no
correction. Right: with orientation correction.

B. Position Correction

As already explained, the position of the object is com-
puted on the basis of the triangulated centroids of the
segmented regions using a calibrated stereo system. How-
ever, the triangulation result is error-prone because of three
reasons:

1) The position of the triangulated 3D point in the object
coordinate system differs depending on the view.

2) The centroids of the 2D regions in general do not
originate from projection of the same object point.

3) The projection on a planar image sensor causes a
deformed image of the object.

The reasons (1) and (2) effectively lead to the same
problem: The relationship between the triangulated point and
the object is unknown. Intuitively one might first think that
triangulating the centroids of the 2D regions results in the
computation of a point on the surface of the object. While
this is approximately true for planar objects – it is not true
for 3D objects. Even for the optimal case of a sphere, the
triangulated point does not lie on the surface and varies
depending on the position of the sphere, as shown in [20].

Already in the basic approach, a rudimentary position
correction is applied, as explained in Section II. However,
because of the three explained reasons, it is clear that an
accurate position correction for the general case depends on
the geometry of the object, the stereo camera setup and
the views in both images, and therefore on the position
and orientation of the object. Since the exact position t of
the object is not known, the task is to find a function f
that calculates t, given the position estimate t′ calculated
by stereo triangulation and the corrected orientation R (see
Section III-A):

f(t′, R) = t (5)

To achieve maximum accuracy, the correction procedure
must be performed iteratively, since the position affects the
orientation correction, and the orientation affects the position
correction. However, in practice the effect of the position
correction on the orientation correction is so small that at
most two iterations are necessary (see Fig. 6).

The question now is how to find the function f . Our ex-
periments have shown that the attempt to learn f completely
fails, even on perfect simulation data. The reason is that
f depends on the object geometry. Therefore, a learning
procedure would have to implicitly learn the full object
geometry based on a set of pairs {(t′(i), R(i)), t(i)}, which
is practically impossible.

Our approach is to simulate the present situation at run-
time, including the stereo camera setup, the object geometry,
and the estimated object pose in simulation. By doing this,
the position correction vector can be computed for the
actually present conditions. The stereo camera system is sim-
ulated by using the intrinsic and extrinsic camera parameters
from the calibrated stereo camera system that is actually
used. Since neither software nor hardware rendering take
into account lens distortions, the input images are undistorted
after being captured from the camera i.e. all calculations are



performed on the undistorted images. The 3D model of the
object that was used for producing the training views is used
for simulating the object at run-time.

The effects of reason (3) are negligible in practice, since
the deformations due to the projection on a planar image sen-
sor are relatively small. Nevertheless, the resulting errors are
handled by our approach as well, since rendering produces
the same deformations.

Finally, the full pose estimation procedure for a segmented
region pair and a given object representation is summarized
in Algorithm 1 in pseudo code. Here, cl, cr denote the
centroids of the left and right region. The rotation matrix
that was stored with the best matching view is denoted by
R0, and model denotes the 3D model of the object of interest.

Algorithm 1 CalculatePoseSegmentable(cl, cr, R0, model)
→ R, t

1) Calculate the position estimate by stereo triangulation:
t0 ← Calculate3DPoint(cl, cr)

2) Set t := t0.
3) Perform the steps 4–7 k times:
4) Calculate the corrected orientation R on the basis of

R0 and t using the Eqs. (3) and (4).
5) Simulate the current situation by applying R and t

to the 3D model of the object, yielding the simulated
camera images I ′

l , I
′
r.

6) Perform stereo triangulation with the centroids of the
object regions in the simulated views in I ′

l , I
′
r, yielding

t′.
7) Compute the position correction by the update t :=

t0 + t− t′.

The simulated images I ′
l and I ′

r are understood as binary
images, which can be directly computed by conventional
graphics hardware by turning off shading. The formula
t0 + t − t′ from the last step can be explained as follows.
In the simulation procedure, the ground-truth position of
the object is t. The computed triangulation result on the
simulated images is t′, thus the position correction vector
is tc = t − t′. Finally, the corrected position for the real
setup reads t0 + tc = t0 + t− t′.

As already mentioned, the accuracy of the proposed pose
estimation procedure can be increased by performing k > 1
iterations. In practice, the second iteration leads to an observ-
able improvement with subsequent immediate convergence,
as is shown in Fig. 6. The effect of the position correction is
illustrated in Fig. 4 for an example scene. Only one iteration,
i.e. k = 1, was used.

IV. EXPERIMENTAL RESULTS

A. Accuracy

In the following, the accuracy of the proposed pose estima-
tion method was measured on simulated data so that ground
truth information was available. The results for variations
of the z-coordinate within a range of [500, 1000] (mm) are
illustrated in Fig. 5. Only the critical degrees of freedom are

Fig. 4. Effect of the position correction on an example scene. Left: with
orientation correction only. Right: with orientation and position correction.

shown. The main problem is the rotation angle θy around
the main axis of the measuring cup. A correlation between
this θy-error and the z-error can be observed, which results
from the fact that the position correction formula depends
on the orientation information. Since from a side-view, small
variations of the angle θy result in very similar views1, the
likelihood that a slightly wrong view is matched is relatively
high, which explains the errors for the angle θy of up to
10o. Note that this problem cannot be solved by using more
iterations of the pose correction procedure. The cup does
not suffer from this problem, as the y-axis is its rotational
symmetry axis.
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Fig. 5. Accuracy of 6-DoF pose estimation depending on the z-coordinate.
The solid line indicates the result for the cup, the dashed line the result for
the measuring cup.

For the subsequent experiments, a single scalar value was
computed for the overall 3D error rather than presenting the
errors of all six degrees of freedom independently. For this
purpose the surface of the object was sampled uniformly with
a point distance of 2 mm, resulting in a 3D point cloud. In
order to compute an overall 3D error, the ground truth pose
was applied to the point cloud as well as the computed pose,
and the average Euclidean distance between corresponding
points was computed.

The effect of the pose correction formula (see Sections III-
A and III-B) is illustrated in Fig. 6. As can be seen, the first
iteration yields a significant improvement of the accuracy
and a further improvement can be observed for the second
iteration, after which the error converges.

The effect of different rotational resolutions of the training
views was evaluated by the example of a cup with a rotational
symmetry axis. The high resolution view set was acquired

1Note that it is a natural, object-specific problem that rotations around
certain degrees of freedom produce only small variations of the appearance.
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Fig. 6. Accuracy of 6-DoF pose estimation depending on the number of
iterations of the correction procedure.
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Fig. 7. Accuracy of 6-DoF pose estimation depending on the rotational
resolution of the learned views for a cup.

with a resolution of 1o (6,461 views). The second view set
was acquired with a resolution of 5o (285 views). As can
be seen, the higher resolution leads to an improvement of
approx. 2–3 mm.

In the Fig. 8, the errors for 1,000 random trials with a
cup and a measuring cup were evaluated, within a range of
[−100, 100] × [−100, 100] × [500, 1000] for the position,
and [0o, 70o] × [45o, 135o] × [−45o, 45o] for the angles
around the x-, y-, and z-axes. The average error refers to the
average 3D Euclidean distance of the sampled points, after
application of the ground-truth pose and the computed pose,
respectively. The maximum error is the maximum distance
that occurred for the set of all sampled points. A deviation
between the average error and the maximum error indicates
errors of the orientation estimation.

As can be seen, the measuring cup produces greater errors,
with the average error being below 10 mm and the maximum
error below 20 mm for over 95% of the trials. For the cup,
the average error is below 5 mm and the maximum error is
below 10 mm for over 95% of the trials, i.e. is more accurate
by a factor of approx. 2.

In Table I, the standard deviations for the estimated poses
for static objects using real image date are given. The
standard deviations have been calculated for 100 frames. The
units are [mm] and [o], respectively.

B. Runtime

In Table II, the runtimes for the different processing
stages are given for the recognition and pose estimation
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Fig. 8. Accuracy of 6-DoF pose estimation for 1,000 random trials with
a measuring cup (top) and a cup (bottom). The errors were sorted in
decreasing order in order to illustrate the error distribution.

x y z θx θy θz

Measuring cup 0.028 0.049 0.41 0.0034 0.0023 0.0026
Cup with handle 0.033 0.053 0.0017 0.0034 0.0022 0.0027
Cup 0.045 0.029 0.14 0.0018 - 0.0017
Plate 0.049 0.071 0.37 0.0021 - 0.0017

TABLE I
STANDARD DEVIATIONS FOR STATIC OBJECTS.

of one object. The runtime is proportional to the number
of training views of the object. For a full scene analysis
without temporal information, so that a region of interest is
not known, the runtime is also proportional to the number of
potential regions extracted from the image. The processing
times are given for the example of the measuring cup, which
was trained with 15,675 views. Matching 10,000 views,
which were compressed to 64 dimensions with PCA, takes
approx. 1.3 ms on a 3 GHz single core CPU.

The computation time of the pose correction procedure
depends on the graphics card and the graphics driver, since
the stereo setup is simulated online with the aid of OpenGL
for this purpose. The time-critical part is not the rendering
itself, but the transfer from the rendered data to the main
memory. With the use of pixel buffers, rendering and transfer
for a 640×480 grayscale image was achieved within approx.
7 ms on a Windows PC. The pose correction including
simulation of the stereo pair thus takes 14 ms and 28 ms for
k = 2 iterations of the pose correction. Grasping experiments
with the humanoid robot ARMAR-III have proved that a
single iteration is fully sufficient for grasp execution [21].

The system was implemented using the Integrating Vision
Toolkit (IVT, http://ivt.sourceforge.net).

Finally, Fig. 9 shows visualizations of the results for sev-



Time [ms]
Color segmentation 4
Matching 2
Pose correction 14
Total 20

TABLE II
PROCESSING TIMES FOR THE PROPOSED RECOGNITION AND POSE

ESTIMATION SYSTEM. ONE ITERATION OF THE POSE CORRECTION

PROCEDURE WAS USED. THE TESTS WERE PERFORMED ON A PENTIUM

IV, 3 GHZ.

eral example scenes seen by the humanoid robot ARMAR-III
operating in a kitchen environment.

Fig. 9. Exemplary results with the proposed object recognition and pose
estimation system. The computed object pose has been applied to the 3D
object model and the wireframe model has been overlaid.

V. DISCUSSION AND OUTLOOK

We have presented an accurate 6-DoF pose estimation
method for single-colored objects. For these kinds of ob-
jects, state-of-the-art approaches are not applicable, since
the only feature suitable for pose estimation is their shape.
It was shown that by combining stereo triangulation and
appearance-based matching of globally segmented views, the
6-DoF pose can be estimated. For this purpose we have
introduced a pose correction method that utilizes online
projection of a 3D model of the object. With the proposed
method, a single object can be recognized, including pose
estimation, within 20 ms using conventional hardware.

Our future work will focus on incorporating a more gen-
eral segmentation approach, which also allows to deal with
occlusions. Furthermore, the accuracy of the estimated pose
could be increased further by subsequent online generation
of a small view set at full resolution in the vicinity of the
estimated pose.
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