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Abstract— In the recent past, the recognition and localization
of objects based on local point features has become a widely
accepted and utilized method. Among the most popular fea-
tures are currently the SIFT features, the more recent SURF
features, and region-based features such as the MSER. For
time-critical application of object recognition and localization
systems operating on such features, the SIFT features are
too slow (500-600 ms for images of size 640x480 on a 3 GHz
CPU). The faster SURF achieve a computation time of 150-
240 ms, which is still too slow for active tracking of objects
or visual servoing applications. In this paper, we present
a combination of the Harris corner detector and the SIFT
descriptor, which computes features with a high repeatability
and very good matching properties within approx. 20 ms. While
just computing the SIFT descriptors for computed Harris
interest points would lead to an approach that is not scale-
invariant, we will show how scale-invariance can be achieved
without a time-consuming scale space analysis. Furthermore,
we will present results of successful application of the proposed
features within our system for recognition and localization of
textured objects. An extensive experimental evaluation proves
the practical applicability of our approach.

I. INTRODUCTION

In the recent past, the recognition and localization of
objects based on local point features has become a widely
accepted and utilized method. Among the most popular
features are currently the SIFT features (Scale Invariant
Feature Transform) [1], [2], the more recent SURF features
(Speeded Up Robust Features) [3], and region-based features
such as the MSER (Maximally Stable Extremal Regions)[4].
The most popular interest point operators are the Harris
corner detector [5] and the Good Features to Track [6], also
referred to as Shi-Tomasi features.

The main task of matching features that are defined by
interest points is to achieve invariance to the mentioned
changes. In this context, the term feature descriptor is often
used, denoting the data structure that is compared in order to
calculate the similarity between two feature points. Various
methods have been proposed for this purpose. In [7], an ap-
proach is presented using a rotationally symmetric Gaussian
window function to calculate a moment descriptor. In [8],
local jets according to [9] are used to compute multiscaled
differential grayvalue invariants. In [10], two types of affinely
invariant regions are proposed: one based on the combination
of interest points and edges, and the other based on image
intensities. In [3], a speeded up approach named SUREF is
presented, using a fast Hessian detector and gradient-based

descriptor.

In [11], the performance of five types of local descriptors
is evaluated: SIFT, steerable filters [12], differential invari-
ants [9], complex filters [13], and moment invariants [14].
In all tests, except for light changes, the SIFT descriptor
outperforms the other descriptors.

In [15], an object recognition system with a database
of 50 objects is presented, which uses the Gabor wavelet
transformation around Shi-Tomasi interest points in order
to calculate a feature descriptor. k-means clustering is used
to reduce the number of features stored in the database.
Murphy-Chutorian and Triesch show empirically that for
their test database, 4,000 shared features are the optimal
tradeoff between computation time (27 s) and detection rate
(79%). Without feature sharing, the storage and comparison
of 160,000 independent features would be required.

A completely different approach for point matching is pre-
sented in [16]. Instead of calculating a descriptor analytically
to achieve invariance, robustness to scaling, rotation, and
skew is achieved in a brute-force manner. Each image patch
around a point feature is represented by a set of synthetically
generated different views of the same patch, intended to
cover all possible views. In order to speedup matching, PCA
is applied to all view sets. Point matching is performed by
calculating the nearest neighbor in the eigenspace for a given
image patch. The complete process takes about 200 ms for a
single frame on a 2 GHz CPU.

This type of feature representation was used in our pre-
vious work [17]. It was shown that through combination
with the idea of applying k-means clustering from [15] an
object can be recognized within 350 ms, using a database
consisting of 20 objects. However, the learning procedure
is very time consuming (approx. 20 hours for 20 objects)
due to the computation of the covariance matrix for PCA
computation and the subsequent k-means clustering. More
importantly, such an approach does not allow incremental
updates of the database, since the PCA must be computed
for all features, as well es k-means clustering.

In this paper, we will present our novel types of features,
which combine the Harris corner detector with the SIFT
descriptor'. In order to achieve scale-invariance in spite of
omitting the scale space analysis step of the SIFT features,

'Note: The unpublished term Harris-SIFT that can be found on the
internet has nothing to do with the proposed features and describes a
completely different approach.



the features are computed at several predefined spatial scales
explicitly. A thorough analysis of the scale coverage of
the SIFT descriptor and the proposed extension justifies
the choice of the involved parameters. Furthermore, we
will present our 2D object recognition system that uses
the proposed features. Experimental results show that the
proposed features are computed within approx. 20ms on
images of resolution 640x480 and allow robust real-time
recognition and localization of a single object at frame rates
of 30 Hz using conventional hardware.

The work presented in this paper is part from [18]. In
parallel, Wagner et al. have developed a similar approach
based on the same idea, using a combination of the SIFT
descriptor and Ferns descriptor [19] together with the FAST
detector [20], as presented in [21]. In this paper, the original
SIFT descriptor is combined with the Harris corner detector,
and all parameters are derived from a thorough analysis of
the scale coverage of the SIFT descriptor.

II. FEATURE CALCULATION

In this section, the developed feature calculation method is
presented. As already stated, our experiments proved that the
SIFT descriptor is a very robust and reliable representation
for the local neighborhood of an image point. However,
the scale-space analysis required for the calculation of the
SIFT feature point positions is too slow for visual servoing
applications. As stated in [3], the computation of the SIFT
features for an image of size 800x640 takes approx. 1s
(using a Pentium IV, 3 GHz). This scales to about 0.6 s for the
resolution of 640x480. The SURF features require approx.
0.15-0.24 s (depending on the SURF variant) on the same
image size. The goal was to find a method that allows feature
calculation in approx. 20ms for an image of size 640x480.

One of the main strengths of the SIFT features are their
scale-invariance. This is achieved by analyzing and process-
ing the images at different scales. For this, a combination of
Gaussian smoothing and a resize operation is used. Between
two so-called octaves, the image size is halved, i.e. resized
to half width and half height. The different scales within
an octave are produced by applying a Gaussian smoothing
operator, and the variance of the Gaussian kernel is chosen
in a way that the last scale of one octave and the first scale
of the next octave correspond to each other.

Since the scale space analysis performed by the SIFT
features for calculating the feature point positions is the by
far most time-consuming part, the idea is to replace this step
by a faster method, namely an appropriate corner detector.
As shown in [22], the Harris corner detector is a suitable
starting point for the computation of positions of scale and
affine invariant features. In [22], the Harris-Laplace detector,
which is based on the Harris corner detector, is extended to
the so-called Harris-Affine detector, which achieves affine
invariance.

However, the computational effort for the calculation of
the Harris-Laplace or even more the Harris-Affine features
is again too high for visual servoing applications. Therefore,
the goal was to investigate if it is possible to combine the

conventional Harris corner detector with the SIFT descriptor,
while keeping the property of scale-invariance.

Fig. 1. Image used for evaluation of the scale coverage of the SIFT
descriptor. For this image, 284 feature points were calculated by the Harris
corner detector, using a quality threshold of 0.01. The computed feature
points are marked by the green dots.

As a first step, the scale coverage of the SIFT descriptor
computed with a fixed window size of 16x 16 was evaluated.
For this, the Harris corner points were calculated for the
image from Fig. 1 and stored as a set {x;} with i €
{1,...,n} and x; € R?. The image was then resized with
bilinear interpolation to different scales s € [0.5, 2]. At each
scale s, the stored corner point locations were scaled, i.e.
wz(-s = sx;, so that ground truth for the correspondences is
given by :cl(s) ~ x;. For each feature in the scaled image,
the best matching feature in the set {x;} was determined.
In Fig. 2, the resulting percentages of correct matches at the
different scales are plotted. In order to see the symmetry of
the scale coverage, a % scale was used for the part of the

s-axis left of 1.0.
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Fig. 2. Plot of the scale coverage of the SIFT descriptor. The evaluation was
performed on image scales computed by resizing with bilinear interpolation.

As can be seen in Fig. 2, the matching robustness of
the SIFT descriptor is very high (>80%) within a range of
approx. 10—15 %. Therefore, it must be possible to close the
gap between two scales by exploiting the scale coverage of
the SIFT descriptor only, if the scales are close enough to
each other. In other words: The idea is that a time-consuming
scale space analysis based on a scale space representation
using Gaussian filtering can be omitted, and instead a suit-
able scale factor is used for computing predefined scales
using a resize operation with bilinear interpolation. For the



conventional SIFT features, the scale factor between two
consecutive octaves is 0.5. The question is now, what is a
suitable scale factor As with 0.5 < As < 1 when omitting
the scale-space analysis and closing the gap between adjacent
spatial scales by exploiting the scale coverage of the SIFT
descriptor only?

In Fig. 3, the matching percentages for the same ex-
periment as before are plotted, this time computing SIFT
descriptors at multiple predefined scales. Three scales were
used for producing the SIFT descriptors, i.e. (As)?, (As)l,
and (As)?. As before, the Harris corner points were only cal-
culated once for the original image, and the image locations
were scaled for calculating the SIFT descriptor at the lower
scales. Note that this is only done for comparison purposes;
for normal application, the interest points are re-calculated
at the lower scales to avoid the computation of dispensable
features. The peaks at 100 % occur when (As)! = s, i.e.
the features to be matched are computed on the exact same
image.
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Fig. 3. Plot of the scale coverage when using SIFT descriptors at multiple
scales. The evaluation was performed on image scales computed by resizing
with bilinear interpolation. Three levels were used; the parameter As
denotes the scale factor between two consecutive levels.

As can be seen, the scale factors As = 0.75 and As = 0.8
essentially achieve the same performance within the interval
[0.6, 1]. For the scales smaller than 0.6, As = 0.75 is
superior, as expected. Within the interval [0.8, 1], As =
0.85 achieves the best results. However, the performance
decreases rapidly for scales smaller than 0.7, since only
three levels are used. Within the interval [0.7, 1], As = 0.7
achieves the worst results. The strengths become visible
at the smaller scales. However, this can be also achieved
by using a larger As and an additional fourth level if
necessary, while the inferior performance of As = 0.7 for
the crucial higher scales cannot be improved. Judging from
theses results, As = 0.75 is a good tradeoff between a high
matching performance and a high coverage.

Finally, the extended Harris-SIFT features must prove to
perform as well when applied in practice, i.e. the training
view and the current view are acquired using different setups.
The two images used for the following experiment are shown
in Fig. 4. The training view on the very right is the same
as shown in Fig. 1; it is included again only for illustrating
the scale differences. The features were tested on the image

Fig. 4. Images used for testing the performance of the extended Harris-
SIFT features. The computed feature points are marked by the white dots.
Left: view corresponding to a scale of 0.32 relative to the training view,
with 438 computed feature points. Middle: view corresponding to a scale
of 0.64 relative to the training view, with 500 computed feature points.
Right: training view, with 284 computed feature points.

shown in the middle of Fig. 4, which contains the object at
a scale of approx. 0.64. For the tests, this image was resized
to scales from [0.5, 1], i.e. the smallest effective scale of the
object was 0.5 - 0.64 = 0.32 (see left image from Fig. 4),
compared to the training view.

In Fig. 5, the total number of successfully matched interest
points at each scale for this experiment is plotted. Note that
according to [1], for each point, several SIFT descriptors are
computed, if the calculated orientation tends to be ambigu-
ous. In order to not falsify the results by counting several
matches for a single interest point, for each interest point at
most one match was counted. By doing this, the resulting plot
shows what counts for recognition and pose estimation: the
number of successfully matched image locations. The plot
shows the results for As = 0.75, using 3, 4, and 5 levels,
respectively. The maximum number of interest points was
restricted to 500. For the computation of the SIFT descriptor,
a fixed window size of 16x16 was used.
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Fig. 5. Illustration of the performance of the extended Harris-SIFT features
for the views shown in Fig. 4. As scale factor, As = 0.75 was used. The
plot shows the total number of successfully matched interest points at each
scale s, where s is understood in relation to the object’s size in the training
image.

As can be seen, using four or five levels leads to the same
results within the interval [0.47, 1]. When using three levels,
the performance starts to decrease noticeably at approx. 0.57.
For the performed experiments, three levels were used for
the training views, which proved to be fully sufficient when
using images of size 640x480. Note that, in practice, often
the limiting factor is the effective resolution of the object
in the image, and not the theoretical scale invariance of the
features.



III. RECOGNITION AND 2D LOCALIZATION

In this section, our recognition and 2D localization system,
in which the proposed features are applied, is summarized
briefly. The approach is a variant of Lowe’s framework
[1]; the main differences are the voting formula for the
Hough transform and the final optimization step using a full
homography. Details are given in [18].

The feature information used in the following is the
position (u,v), the rotation angle ¢ and the feature vector
{f;} consisting of 128 floating point values in the case of
the SIFT descriptor. These feature vectors are matched with
those of the features stored in the database using a nearest
neighbor approach. For recognizing objects on the basis of
point feature correspondences, an approach consisting of
three steps is used:

A) Hough transform

B) RANSAC

C) Least squares homography estimation

A. Hough Transform

In the first step, a two-dimensional Hough space with the
parameters u, v is used; the rotational information ¢ and the
scale s are used within the voting formula. In contrast to [1],
the scale s is not taken from the features but votes are cast
at several scales [23], since the scale is not computed by the

Harris-SIFT features.

Given a feature in the current scene with u,v,¢ and
a matched feature from the database with u’,v’, ', the
following bins of the Hough space are incremented:

Uk u cosAp —sinAp u’
<0k>:T[(v)_sk(sinA4p cos Ap )(v’ )]
ey
where Ay := ¢ — ¢’ and s denotes a fixed number of
discrete scales. According to the results of the extended
Harris-SIFT features for As = 0.75 and using three levels
(see Fig. 5), s :== 0.5+ k- 0.1 with & € {0,...,5} was
used for the performed experiments. The parameter r is a
constant factor denoting the resolution of the Hough space.
After the voting procedure, potential instances of an object
in the scene are represented by maxima in the Hough
space. The set of correspondences is then filtered by only
considering those correspondences that have voted for a
maximum or cluster of interest.

B. RANSAC

In the second step, a RANSAC approach is applied using
the filtered set of correspondences from the previous step.
The RANSAC algorithm allows to filter outliers, which could
potentially lead to a wrong local minimum throughout the
least squares approach for accurate homography estimation
in the third step. For the error tolerance, 5 pixels are used
and a fixed number of 200 iterations.

C. Least Squares Homography Estimation

For the filtered set of feature correspondences resulting
from the RANSAC algorithm, now a full homography is
estimated with a least squares approach. First, in an iterative

procedure, an affine transformation is computed, filtering
outliers in each iteration. In the final step a full homography
is estimated to allow for maximum accuracy.

Fig. 6. Filtered feature correspondences after iterative computation of the
affine transformation.

If after the complete process of homography estimation, a
certain number of feature correspondences is remaining and
the mean error is smaller than a predefined threshold, an
instance of the object is declared as recognized. The final,
filtered set of feature correspondences for an example scene
is illustrated in Fig. 6. The 2D localization is given by the
transformation of the contour in the training view to the
current view.

IV. RUN-TIME CONSIDERATIONS

As described in Section II, throughout the experiments
three levels were used with a scale factor of As = 0.75.
However, when assuming that the object never appears larger
than the largest training view, then multiple levels are not
needed for feature computation on the current view. It is
sufficient to use multiple levels for the training view, so that
the object can be recognized at smaller scales. This strategy
significantly reduces the number of feature comparisons and
therefore the run-time of the matching procedure.

The computation of the nearest neighbor for the purpose
of feature matching is the most time-consuming part of
the complete recognition and localization algorithm. To
speedup the nearest neighbor computation, a kd-tree is used
to partition the search space; one kd-tree is built for each
object. In order to perform the search efficiently, the Best Bin
First (BBF) strategy [24] is used. This algorithm performs
a heuristic search and only visits a fixed number of n;
leaves. The result is either the actual nearest neighbor, or
a data point close to it. The parameter n; depends on the
number of data points i.e. SIFT descriptors: The more SIFT
descriptors the kd-tree contains, the greater n; must be to
achieve the same reliability. Since each kd-tree only contains
the features of one object, n; can be chosen to be relatively
small. Throughout the experiments, n; = 75 was used for
feature sets consisting of not more than 1,000 features.

V. EXPERIMENTAL RESULTS

In this section, results of experiments for the evaluation
of repeatability, accuracy, and speed are presented. The
repeatability of the proposed features equals the repeata-
bility of the Harris corner points within a scale interval
of approx. [0.87, 1], when using a scale factor of As =
0.75 (v/0.75 =~ 0.87). For measuring the repeatability, the



right image from Fig. 6 was rotated and scaled, and the
Harris corner points were computed both on the original and
the result image. The repeatability measure was computed
with the formula given in [22]. When applying the Harris
corner detector, three parameters are important: the quality
threshold, the minimal distance between two feature points,
and the maximal number of feature points to be calculated.
Throughout all experiments, we used a minimal distance of
5 pixels. The quality threshold was set to 0.001 in order
to produce many features. Fig. 7 shows the results for 500
and 1200 feature points, where 1200 was the maximum
number of features that could be calculated with the chosen
parameters. As can be seen, the repeatability at the scale 0.87
amounts to 73% for 500 points and 84% for 1200 points.
Note that it is impossible to provide one representative value
of the repeatability for a specific scale, since the repeatability
always depends on the provided parameters and the image
data.
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Fig. 7. Results of repeatability experiments.

The performance of the proposed features within our
object recognition system and localization system is shown
in Fig. 8. A difficult scene with skew and a low effective
resolution of the object of interest was chosen. The 2D error
was computed as the mean projection error into the current
image. As can be seen, a low quality threshold for the Harris
corner detector should be used.

The processing times given in Table I were computed
using a trained object representation containing 700 SIFT
descriptors and 230 SIFT descriptors were extracted from
the current view. The processing times for matching and for
homography estimation scales linearly with the number of
trained objects. Furthermore, the matching time scales lin-
early with the number of features extracted from the current
view. The system was implemented using the Integrating
Vision Toolkit (IVT)Z, which, among many other features,
offers a fast Harris corner detector (compared to OpenCV
1.0: 10 ms vs. 17 ms) and an efficient kd-tree implementation.
The company keyetech® offers highly optimized implemen-
tations (e.g. Harris corner detection within less than 5ms or
nearest neighbor computation).

2http://ivt.sourceforge.net
3http://www.keyetech.de
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Fig. 8. Effect of the Harris quality threshold for an example with a low

resolution of the object. One learned view was used containing 700 feature
descriptors. The computation time of the Harris corner points took 13 ms
in all cases.

Finally, exemplary recognition results on real image data
aquired by the humanoid robot ARMAR-III [25] operating
in a kitchen environment are shown in the Fig. 9 and 10. The
video attachment shows the results of processing an image
sequence with a moving object.

Time [ms]
Harris corner detection 10
SIFT descriptor computation 6
Matching 12
Iterative homography estimation 3
Total 31

TABLE I
PROCESSING TIMES FOR THE PROPOSED OBJECT RECOGNITION AND
LOCALIZATION SYSTEM. THE OBJECT REPRESENTATION CONSISTED OF
700 DESCRIPTORS AND THE CURRENT VIEW CONTAINED 230
DESCRIPTORS. THE TESTS WERE PERFORMED ON A 3 GHz CORE 2 DuoO.

Fig. 9. Computed feature correspondences and recognition result for a
difficult scene, featuring out-of-plane rotation and a low effective resolution
of the object of interest.

VI. DISCUSSION

We have presented a novel type of point feature, which
combines the Harris corner detector with the SIFT descrip-
tor. It was shown how scale-invariance can be achieved
efficiently and effectively without a time-consuming scale



Fig. 10.  Exemplary results with the proposed object recognition and
localization system.

space analysis. Furthermore, the integration of the proposed
features in our object recognition and localization system has
been presented.

Results from experiments on simulated image data as well
as on real image data from the humanoid robot ARMAR-III
operating in a kitchen environment proved the practical
applicability and performance of the proposed features. The
features are computed within approx. 20 ms for an image
of resolution 640x480; with the proposed system a single
object can be tracked in real-time at frame rates of 30 Hz.
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